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Abstract 

We develop an inclusive wealth type index for natural capital in the Barents Sea that accounts 

for ecosystem services via trophic interactions. We consider three key fish species in the 

Barents Sea under stochastic growth dynamics. Compared to evaluation at market prices, the 

estimated wealth from the inclusive wealth approach is several times higher. Ecosystem 

wealth depends on the management scheme, and we consider both business as usual (BAU) 

and an optimized ecosystem-based management scheme (EBM). While BAU maintains 

wealth near its current level (5% increase in the long run), EBM increases wealth with almost 

20% in the short run and more than 25% in the long run. Realized shadow prices suggest that 

prey species stocks are undervalued when evaluated at market prices.  
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1. Introduction 

Sustainability is central to modern natural resource management. Management of the Barents 

Sea cod, the world’s largest cod stock today, is case in point (Olsen et al. 2007). Renewable 

natural resources exist in an intricate interplay with an ecosystem and the environment. 

Management of the resource hence influences the ecosystem, and human interventions in 

other parts of the ecosystem or environment influence the resource. Management grounded in 

sustainability must consider these interactive effects while maintaining the capacity for future 

resource needs (Polasky et al. 2015). Sustainable and ecosystem-based management poses, in 

other words, intricate and complex problems that require new tools to gauge resource scarcity, 

opportunity cost, and substitution opportunities (and limitations) between different capital 
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stocks (Arrow et al. 2004, Fenichel and Abbott 2014). Yun et al. (2017) presented an 

inclusive wealth headline index for sustainable ecosystem-based management that made 

headway toward measuring resource scarcity and substitution opportunities. We further 

broaden the applicability of this index to acknowledge uncertainty in underlying dynamics 

and to capital stocks not directly utilized. 

 The economic literature on sustainable development has two veins (Arrow et al. 

2012). One goes back almost hundred years and focuses on maintaining real income. The 

other, more recent vein takes intergenerational wellbeing as its objective. That is, social 

wellbeing is the wellbeing of the current generation and the potential welfare of future 

generations. The criterion function for sustainable development of intergenerational wellbeing 

is a weighted sum of all capital asset stocks in society. The weights are the marginal 

contributions of the stocks to intergenerational wellbeing – the assets’ accounting prices. The 

weighted sum is proportional to societal wealth. Sustainable development is then development 

where societal wealth is nondecreasing. 

 A challenge for the wealth-approach to sustainable development is that natural capital 

stocks tend to be neglected or underrepresented in wealth assessments (Arrow et al. 2012). 

Official accounts of national wealth, for example, may significantly underrepresent natural 

capital stocks (Obst et al. 2016, Greaker et al. 2017). An issue with national wealth accounts 

in this regard, is that they tend to rely on market prices, and market prices fail to reflect the 

full marginal contribution of natural capital to national wealth (Barbier 2011). (Whether 

national wealth accounts aim to reflect intergenerational wellbeing is a different matter 

altogether.) A relevant example is a natural capital stock that is not directly utilized – say, 

juvenile herring in the Barents Sea – and thus fetches no market price. But certainly the 

herring in the Barents Sea is there, preying upon capelin larvae that otherwise could have 

been harvested when grown or served as prey for the Barents Sea cod. Also, herring in the 

Barents Sea is precious prey for the cod stock before it migrates to the Norwegian Sea to 

mature and spawn. Thus, in a multitude of ways, herring contributes to the ecosystem wealth 

in the Barents Sea, but none of it is captured by its nonexistent market price. 

 In the perspective of sustainable development, accurate measurement of natural capital 

asset prices is a key management problem (Smulders 2012). Flawed or missing measurements 

may lead to distorted decisions (Stiglitz et al. 2010), and while national accounts and budgets 

are incomprehensive in terms of natural capital, ecosystem-based management has limited 

traction with decision makers (Barbier 2011). And the management issue is significant; an 

estimated 28% of global wealth rests in ecosystems (UNU-IHDP and UNEP 2014). Thus, to 
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establish accounting prices – in the literature often referred to as shadow prices – for 

ecosystem goods and services is a critical step in achieving sustainable development  (Polasky 

et al. 2015). 

 Fenichel and Abbott (2014) derived the relevant asset price for a natural capital stock 

and demonstrated its relationship to net present value (that is, the value function, for example 

obtained via dynamic programming). A key insight is that when the decision space has a 

single point – one is committed to what Dasgupta and Maler (2000) calls an economic 

program – the costate or adjoint in the dynamic programming scheme is the relevant asset 

price. In the words of Fenichel and Abbott (2014), ‘[t]he adjoint equation reflects society’s 

resource allocation choices associated with any economic program’ (p. 3). Yun et al. (2017) 

extended the approach to consider a system of interacting capital stocks and presented the 

measure of ecosystem wealth as ‘an attractive headline index’ for ecosystem-based 

management (p. 6539). In particular, they studied three Baltic Sea fisheries (sprat, herring, 

and cod) and concluded that herring and sprat, both prey species for the cod, represent larger 

stores of wealth than suggested by their market prices. In contrast, the derived accounting 

price for cod was lower than what was implied by its commercial value. 

 We apply the approach to three key fish stocks in the Barents Sea; cod, capelin, and 

herring. The Barents Sea is one of the most productive ocean areas in the world and subject to 

extensive research. The cod fishery is commercially and historically important (Hannesson et 

al. 2010), and is – after the infamous collapse of the cod stock in the Northwest Atlantic – the 

largest cod fishery in the world. Capelin is the most important prey species for the cod and is 

also commercially exploited. Herring, on the other hand, is not fished for in the Barents Sea 

but has an important influence on the ecosystem, both as prey for cod and as predator on 

capelin larvae. Limiting our model to these three species has the advantage that the cod stock 

dynamics is reasonably well captured while the model remain tractable (Kvamsdal and Sandal 

2015). To limit our scope to obtain a measure of the ecosystem wealth resting in these species 

and deriving relevant accounting prices for them, we adopt the bioeconomic model 

established by Poudel and Sandal (2015). 

 We compare outcomes from two economic programs; the current management regime, 

referred to as business as usual (BAU), and an ecosystem-based management program 

(EBM). BAU is based on maximum sustainable yield for the individual species and largely 

emulates the current management scheme (ICES 2017a, 2017b). EBM is, given the model 

structure, the optimal management plan and takes into account both ecological and economic 

tradeoffs. We find that continuing with BAU, ecosystem wealth is largely maintained at its 
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current level, while wealth may increase significantly (20-25%) under EBM. Similarly to Yun 

et al. (2017), we find that more wealth rests in the prey species stocks than what their market 

prices suggest. When comparing our measure of inclusive wealth to a simple aggregate 

evaluated at market prices, we find that our measure is several times higher. 

 The reminder of this article is organized as follows. In section 2, we explain how we 

derive the ecosystem wealth measure and the relevant accounting prices. In section 3, we 

present the bioeconomic model for the key Barents Sea fish stocks. Section 4 is devoted to 

results (forecasts of the ecosystem state, wealth measures under differing economic programs, 

and derived accounting prices). Finally, we provide our concluding remarks in section 5. 

 

2. Ecosystem wealth 

Wealth is the price-weighted sum of all societal capital stocks valued at appropriate asset 

prices (Yun et al. 2017). This concept of wealth may be considered standard in the economic 

literature, and is by Fenichel and Abbott (2014) traced back to Jorgenson (1963). An index of 

wealth is then: 

𝑊(𝑡) = ∑ 𝜆𝑖(𝑡)𝑥𝑖(𝑡)

𝑖

 (1) 

Here, 𝑥𝑖(𝑡) is the capital stock level at time 𝑡 for capital stock 𝑥𝑖, while 𝜆𝑖(𝑡) is its 

appropriate asset price, the accounting price (Dasgupta 2001), at the given time. The index – 

called inclusive wealth – sums over all capital stocks. 𝑊(𝑡) is a linear expression, but prices 

will depend on the state of the full system of capital stocks, making the inclusive wealth 

measure nonlinear in capital stocks (Yun et al. 2017). Changes in wealth over time can be 

measured as follows: 

Δ𝑊 = ∑ 𝜆𝑖̅Δ𝑥𝑖

𝑖

 (2) 

where the Δ-notation refers to discrete changes over the time span Δ𝑡 = 𝑡𝑏 − 𝑡𝑎 (𝑡𝑏 > 𝑡𝑎) 

such that: Δ𝑥𝑖(𝑡𝑏) = 𝑥𝑖(𝑡𝑏) − 𝑥𝑖(𝑡𝑎).  𝜆𝑖̅ denotes the mean asset price over Δ𝑡. When Δ𝑡 is 

small, it can be shown that (Dasgupta 2001, Arrow et al. 2004): 

Δ𝑊

Δ𝑡
≈

Δ𝑉

Δ𝑡
 (3) 

Here, Δ𝑉 are changes to the net present value of the flow of dividends. Equation (3) is 

essentially Δ𝑊 ≈ Δ𝑉. A necessary condition for sustainable development over Δ𝑡 is that 

wealth is nondecreasing (Yun et al. 2017): 

Δ𝑊 ≈ Δ𝑉 ≥ 0 (4) 
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Equation (4) is thus our sense of sustainability in what follows. Nondecreasing wealth (4) 

corresponds to a weak requirement for sustainability, relating only to the aggregate 

development and where no particular capital assets are viewed as essential and irreplaceable 

(Barbier 2011, Polasky et al. 2015). A strong requirement goes beyond the aggregate level 

and protects essential assets from depletion. Thus, the different assets needs to be considered 

in terms of their essentiality, and strong sustainability further leads to constraints in the 

management problem. Presently, we abstract from these complications and follow Yun et al. 

(2017) in considering the weak sustainability requirement. 

Taking intergenerational wellbeing as our objective for sustainable development, the 

potential present and future wellbeing stored in a set of capital stocks can, per equation (3), be 

expressed as the net present value of present and future dividend flows, also called the value 

function (Arrow et al. 2012): 

𝑉(𝑥, 𝑡) = E ∫ 𝑒−𝛿(𝜏−𝑡)Π(𝑥, 𝑢, 𝜏)d𝜏
∞

𝑡

 (5) 

In (5), Π(𝑥, 𝑢, 𝜏) is the flow of dividends to society at time 𝜏, with the vector 𝑥 being a 

measure of capital stock levels and the vector 𝑢 being a measure of control variables. Both 𝑥 

and 𝑢 are functions of time, but we suppress the time argument to simplify the notation. We 

presume that management (that is, 𝑢) is committed to an economic program such that 𝑢 is 

known for all future times (possibly and preferably as a feedback of 𝑥). An economic program 

that details the development of the control variables at all future times may sound 

unrealistically comprehensive, but the economic program typically consist of feedback rules 

where the controls essentially are functions of the capital stock levels 𝑥. Further in (5), 𝛿 is 

the rate of discount (5%) and the term 𝑒−𝛿(𝜏−𝑡) discounts the value of dividends back to time 

𝑡, and E is the expectancy operator. That is, capital stock levels are subject to stochastic 

developments. Moreover, capital stock levels are governed by some know stochastic 

differential vector equation: 

d𝑥 = 𝑓(𝑥, 𝑢)d𝑡 + 𝜎(𝑥)d𝐵 (6) 

Equation (6) states that an incremental change d𝑥 results from the deterministic drift term 

𝑓(𝑥, 𝑢)d𝑡 and the stochastic diffusion term 𝜎(𝑥)d𝐵. The drift term is a function of both stock 

levels 𝑥 and control variables 𝑢; d𝑡 is the time increment. The d𝐵 are Brownian increments 

with mean zero and variance d𝑡, that is, scaled to the time increment. The scale of diffusion 

(𝜎(𝑥)) may in general depend on stock levels 𝑥. 
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Changes in the value function (5) ‘are the ultimate theoretical basis for assessing 

welfare’ (Yun et al. 2017, p. 6540), and given that we can derive the value function for any 

feasible economic program, we evaluate changes to the value function in our analysis below. 

We derive the value function by solving the stochastic Hamilton-Jacobi-Bellman (HJB) 

equation: 

𝛿𝑉(𝑥) = sup
𝑢∈𝑈

{Π(𝑥, 𝑢) + ∇𝑉(𝑥)𝑓(𝑥, 𝑢) +
1

2
𝑡𝑟(Δ𝑉(𝑥)𝜎2(𝑥))} (7) 

In (7), 𝑡𝑟(⋅) denotes the trace-operator, and Δ𝑉(𝑥) denotes the Hessian of 𝑉(𝑥). The HJB 

equation governs the solution of the problem of maximizing (5) subject to the constraint (6), 

where 𝑢 ∈ 𝑈 is the decision variable and 𝑈 is the set of feasible controls. As is well known, 

the HJB equation represents – under standard assumptions of smoothness and concavity – a 

contraction mapping that converges to a unique solution. However, under an economic 

program – a management scheme – the set of feasible controls consists of a single control, 

essentially making the supremum operator superfluous. The contractive property of the HJB 

equation is nevertheless maintained and may provide the relevant value function for the given 

economic program. 

 Assuming an economic program, where the set of feasible controls (𝑈) contains a 

single control, simplifies the HJB equation and its solution procedure. This simplification 

enables the solution procedure for application to high-dimensional problems that otherwise is 

out of reach because of the curse of dimensionality. The simplification also short-cuts the 

derivations in Fenichel and Abbott (2014) and Yun et al. (2017) that show how the 

accounting price can be expressed in terms of (7). Put simply, the simplification is essentially 

to construct a problem where the given economic program is the optimal solution, and given 

its solution, the relevant shadow price is available in terms of the value function directly. 

 The accounting price (the shadow price) of a stock is the change in the net present 

value to society from an increase in the stock level (Fenichel and Abbott 2014), that is, the 

price is the marginal value. In a deterministic problem formulation, this price is identical to 

the adjoint variable that is governed by the adjoint equation. When considering a stochastic 

problem formulation, as below, the adjoint variable may vary from the marginal value. That 

is, solving the adjoint equation to derive the accounting price may lead astray when 

considering stochastic systems. A comprehensive account of the technical details would take 

us too far afield; interested readers may consult Yong and Zhou (1999, pp. 115-117). Below, 

we avoid this potential pitfall by considering marginal values directly, which conveniently is 

computationally simpler. 
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3. A bioeconomic model for the Barents Sea 

The model comprise the three main species in the Barents Sea; cod, capelin, and juvenile 

herring (Durant et al. 2008). Cod and capelin are commercially targeted and are, as such, 

managed, whereas herring migrate to the Norwegian Sea before maturation (age 3 or 4) and is 

not targeted in the Barents Sea. Herring has nonetheless an important role in the Barents Sea 

ecosystem, both as predator for capelin larvae and as prey for cod. Cod is demersal and preys 

on capelin, herring, and other species, while capelin and herring are both pelagic. 

 We adopt the model used in Poudel and Sandal (2015), which is a stochastic 

formulation in continuous time. The model is formulated in terms of biomasses and is 

essentially a surplus production model with trophic interactions and stochastic drivers. The 

model thus abstracts from age-structure effects, selectivity issues, and further details that may 

or may not be of interest or relevance. For our analysis, these simplifications are both useful 

and acceptable (Link 2010, Kvamsdal and Sandal 2015). 

Let 𝑥, 𝑦, and 𝑧 represent stock levels for the capelin, cod, and herring stock. The 

stochastic stock dynamics are specified as follows: 

d𝑥 = (𝜌1𝑥(1 − 𝑥) − ϕ1𝑥(𝑦 + 𝜃1𝑧) − 𝑢)d𝑡 + 𝜎1(𝑥)d𝐵1  

d𝑦 = (𝜌2𝑦(1 − 𝑦) + ϕ2𝑦√𝑧(1 + 𝜃2𝑥) − 𝑣)d𝑡 + 𝜎2(𝑦)d𝐵2 

d𝑧 = (
𝜌3

𝑦 + 𝜃3𝑥
𝑧(1 − 𝑧) +

𝜙3𝑧𝑥

𝜃4 + 𝑧
+ ϕ4) d𝑡 +  𝜎3(𝑧)d𝐵3  

(8) 

In (8), the 𝜌𝑖, 𝜙𝑖, and 𝜃𝑖 are all positive constants. Parameter values are listed in the appendix 

(Table A1). The state variables 𝑥, 𝑦, and 𝑧 are scaled such that the values of main interest are 

in the unit interval (the carrying capacity, when stock interactions are ignored, is unity for 

each of the stocks). 𝑢 and 𝑣 are harvest rates for capelin and cod. The latter term in each 

equation is the stochastic drift term, where 𝐵𝑖 (𝑖 ∈ [1,2,3]) are independent Brownian motions 

and 𝜎𝑖(⋅) are scale functions. The scale functions are linear, for example, 𝜎1(𝑥) = 𝑠1𝑥, such 

that the stochastic driver is more prominent at high stock levels. In our base case, the pelagic 

stocks (capelin and herring) are subject to a stronger stochastic drive (𝑠1 = 0.4, 𝑠3 = 0.4), 

while the cod stock is subject to a more moderate stochasticity (𝑠2 = 0.2). 

 The first terms in each equation in (8) are the deterministic drift terms and specifies 

how the three stocks grow and interact. For both capelin (𝑥) and cod (𝑦), the basic growth 

follows a logistic growth function. Capelin is prey for both cod and capelin; this interaction is 

captured in the capelin dynamics equation by terms inspired by the crude Lodka-Volterra 

form of predator-prey interaction. This type of interaction is not unusual in this type of model 
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(May et al. 1979, Kvamsdal and Sandal 2015). The interaction terms in the cod equation are 

similar, but are modified by the presence of herring (√𝑧). Herring has both a different basic 

growth pattern, where the growth rate is reduced inversely proportional to a measure of the 

competing biomass (y+𝜃3𝑥), and a simplified interaction term with capelin only. The positive 

constant (𝜙4) captures the inflow of herring larvae from the Norwegian Sea. For further 

details and discussion on the specification of the stock dynamics equations, see Poudel and 

Sandal (2015) and references therein. 

 For the model of the flow of dividends to society, we once more adopt the model used 

in Poudel and Sandal (2015), who again bases their model on Sandal and Steinshamn (2010): 

Π(𝑥, 𝑦, 𝑢, 𝑣) = 𝑝1𝑢 − 𝑐1𝑢𝛼 + 𝑝2𝑣 − 𝑝3𝑣2 − 𝑐2𝑣/𝑦 (9) 

In (9), the 𝑝𝑖, 𝑐𝑖, and 𝛼 are all positive constants, also listed in the appendix (Table A2). 

Capelin harvests, largely used for fish oil and meal production, faces a constant real price 

(𝑝1). There is no stock effect on capelin harvesting costs, based on its schooling nature, but 

costs are nonlinear in the rate of harvest (𝛼). Cod harvests faces a downward sloping price 

schedule (𝑝2𝑣 − 𝑝3𝑣2). Cod harvesting costs has a stock effect such that costs are inversely 

proportional to the stock level; the costs are otherwise linear in the harvest rate. The herring 

stock is not exploited in the Barents Sea and thus generate no direct flow of dividends. Again, 

for further details and discussion of equation (9), see Poudel and Sandal (2015) and references 

therein. 

 We calculate the ecosystem wealth for the Barents Sea system under three different 

management scenarios (economic programs). The first we call business-as-usual (BAU) and 

is an approximation of the current management regime (ICES 2017a, 2017b). The BAU 

harvesting policies aims at maximum sustainable yield (MSY) for the individual species 

without considering trophic interactions. Indeed, this is a simplification of todays’ 

management, but captures the main tendencies of the management plans well enough for our 

model. For the cod, for example, the fishing mortality of the management advice from the 

International Council for the Exploration of the Sea (ICES) is close to the MSY fishing 

mortality, in fact closer than the other potential management plans considered (ICES 2017a). 

Notably, the maximum harvest rate is set below the theoretical maximum of the growth 

function because we have a stochastic model subject to what is called downward drag induced 

by stochasticity (Poudel et al. 2015); the harvest rate is also limited to rates that generate 

revenue. 
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The second management scenario under investigation is called ecosystem-based 

management (EBM) and is simply the harvest policies established by solving the optimization 

problem in equation (7), subject to equations (8) and (9). The resulting policies are three-

dimensional surfaces (manifolds) that take account of species interactions, stochastic drivers, 

and economic conditions. These optimal policies have surprising features, such as 

nonmonotone changes in the capelin harvest rate along the cod stock axis (Sandal and 

Steinshamn 2010, Poudel and Sandal 2015). The EBM-policies are qualitatively identical to 

the policies discussed in Poudel and Sandal (2015), but are recalculated for our grid and 

variable scaling. 

The BAU and EBM regimes are the main management scenarios that we study below. 

We also study outcomes from the single-species management (SSM) regime, where the 

harvesting policies are optimal but constrained to not consider trophic interactions. That is, as 

if interaction terms in (8) were set to zero. SSM amounts to consider the optimal policy 

(EBM) along its boundaries on the axis as valid throughout the state space. Admittedly, the 

SSM regime is simplistic; a more elaborate single-species management approach would adjust 

remaining parameters to partly take account of the missing interaction terms. Thus, the results 

reported for SSM below is perhaps not entirely worst case, but certainly not the best case for 

single-species management. 

The BAU and SSM harvesting policies are plotted in Figure A1 in the appendix. The 

four-dimensional EBM-policies cannot be comprehensibly plotted in any reasonably limited 

space, but Poudel and Sandal (2015) provide several illustrations of key parts of the 

manifolds. Poudel and Sandal (2015) also discuss long-run stock and harvest levels, stability 

issues (resilience), interaction effects, and effects of the stochastic drivers. 

 

4. Ecosystem wealth in the Barents Sea 

Figure 1 shows the observed development in stock levels until 2016 (ICES 2016, 2017a, 

2017b, Mehl et al. 2016), and predicted stock levels from 2016 and over a fifty year period. 

The curves show the mean paths from 1000 predicted paths under the two main management 

regimes (EBM and BAU). See appendix for predictions also for the SSM-regime, as well as 

plots showing 50% probability intervals around the predicted expected levels (Figures A2, 

A3). Cleary, long run predictions are subject to considerable uncertainty. 

 The predicted mean paths in Figure 1 do in no way represent the far more stochastic 

behavior that any realized path displays. Rather, the predicted mean paths indicate at what 

levels the stocks are expected at with time. The historical figures (2000-2016) illustrate the 
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level of stochasticity that the system is subject to. For example, both the pelagic species varies 

over the lower half of their ranges in a matter of years. 

  

Figure 1: Observed and predicted (smoothed mean paths) stock levels under EBM (solid curves) and BAU 

(dashed curves). Figures up until 2016 are observed levels. The vertical line separates observed and predicted 

figures. 

 

There are some discrepancies in the expected stock levels under the two different 

regimes displayed in Figure 1. While the discrepancies in the pelagic stocks (capelin and 

herring) are relatively small, discrepancies are more significant for the cod stock. Under both 

regimes, the cod stock is initially brought down, but under EBM (solid curves) cod is 

depressed for a brief period only before it is brought up to a relatively high expected level 

near its historic highs. Under BAU (dashed curves), the initial depression of cod lasts longer 

and slightly overshoots the expected BAU long run level near the MSY target level at 0.5. 

Capelin is initially (2016) at a very low level, and it recovers quickly under both regimes, in 

part aided by reduced predation from the depressed cod stock. After some slight overshooting, 

capelin settles down near the MSY target level under both regimes, but admittedly at a 

somewhat higher level under EBM despite predation from a larger cod stock. Also the initial 

(2016) herring level is relatively low. Not being directly utilized, it grows slowly to levels 

near its historic highs, albeit to a somewhat lower level under EBM where the predation 

pressure from cod is higher. A key difference in the pelagics is that capelin is expectedly 

higher under EBM than under BAU, while herring is expectedly higher under BAU. That is, 

the optimized EBM scheme clearly prioritizes capelin over herring. 
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As noted above, recovery of capelin is in part facilitated by suppression of its main 

predator under both EBM and BAU. Under EBM, the suppression of cod must be understood 

as aiding the capelin recovery, which quickly is manifested such that the cod suppression is 

brief. Under BAU, the cod is suppressed because the initial (2016) stock level was above the 

implicit target stock level. In an early foray into co-management plans for interacting species, 

Sandal and Steinshamn (2010) discussed conditions under which a prey species can recover 

while the predator is suppressed. 

Again, we observe several instances of overshooting: capelin under both EBM and 

BAU, and cod under BAU. The reason for this overshooting is the herring which slowly – 

over a period of twenty years – reaches a stable level (in expectation at least; as the 

probability intervals displayed in figures in the appendix shows, deviations from the expected 

level are substantial).  

 A final aspect about the predicted stock levels in Figure 1 is the high long-run levels of 

herring that seem incompatible with near-term history (2000-2016). Unquestionably, the 

predictions are simply reflections of the modelled dynamics (8), and a natural question may 

be whether our model is a relevant representation of the Barents Sea ecosystem. For one 

thing, the system is subject to substantial stochasticity, and as the probability intervals shown 

in Figure 2A in the appendix reveal, herring stock levels well below historic highs have 

significant probabilities. Furthermore, the Barents Sea herring are, as discussed above, 

residues – so to speak – from herring spawning along the Norwegian coast. In the future, it is 

not unlikely that the Norwegian Sea spring-spawning herring will reach higher than today’s 

levels – with better ecosystem-based management plans or better cooperation between the 

various fishing nations pursuing the large pelagics in the Norwegian Sea (Ekerhovd and 

Steinshamn 2018). Under such scenarios, more juvenile herring would mostly likely end up in 

the Barents Sea. Thus, high long-run levels of herring in the Barents Sea may conflict with 

near-term historical levels, but aligns with credible future scenarios. 

Based on the predicted stock levels in Figure 1, we can calculate the level of 

ecosystem wealth in the Barents Sea under the different management scenarios (BAU, EBM, 

SSM). That is, we solve (7) while – in the case of BAU and SSM – constraining the set of 

feasible harvest schedules 𝑈 to only consist of the BAU or SSM-policies (Figure A1). In the 

case of EBM, 𝑈 is constrained to the set of nonnegative and bounded controls. Solving (7) 

yields a value function for each of the management scenarios that we thus evaluate along the 

predicted paths. We report the results in Figure 2, with expected wealth levels (solid curves) 
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and 95% probability intervals (shaded areas). To ease comparisons, all curves in Figure 2 are 

scaled to the BAU 2016-level (50.6 billion NOK). 

  

Figure 2: Expected ecosystem wealth in the Barents Sea (with 95% probability intervals) under EBM (dark 

shaded area), BAU (medium shaded area), and SSM (light shaded area). Estimates for 2000-2016 are shown in 

the same color as BAU. All figures are scaled to the BAU 2016-level. 

 

The BAU-regime is expected to keep the level of wealth near today’s level. The 

development is more or less flat initially, before it slowly increases to some 5% above the 

2016 level. Wealth stabilizes notably faster – within five to ten years – than the underlying 

resource stocks that under BAU takes more than twenty years before their expected levels 

settle down for all stocks. Another notable feature is the relatively narrow probability interval 

when compared to probability intervals for the stock levels (Figure A2). The reason wealth 

varies less is that the value function is relatively flat near the long-run state. Wealth has also 

increased over the years 2000-2016, although with substantial variations. Importantly, wealth 

is nondecreasing in expectancy and, per our definition in (4), sustainable under BAU. If we 

estimate wealth simply by market prices multiplied with stock levels and aggregating, we get 

approximately 0.30 on the scale used in Figure 2 (15.0 billion NOK). Thus, considering 

inclusive wealth results in more than three times as much wealth as the simple aggregate. 

Wealth under EBM behaves similar to wealth under BAU, but at a significantly higher 

level and with a shorter stabilization period (five years). Expected wealth is nondecreasing 

also under EBM. A switch to EBM in 2016 would immediately increase the level of 

ecosystem wealth in the Barents Sea with more than 18%. In the long run, wealth is expected 
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to be approximately 26% higher than in 2016. Given that the EBM-policies resulted from the 

optimization procedure, improvement in wealth was to be expected, but an increase of 18-

26% is significant. The EBM probability interval is narrow when compared to stock level 

probability intervals (Figure A2), and also somewhat narrower than under BAU. The 95% 

probability interval for long run wealth under EBM is roughly (1.18,1.31), while under BAU 

it is roughly (0.96,1.14). There are several reasons for more variability in wealth under BAU, 

but a key factor is the higher herring levels under BAU. The stochastic scaling factors 

increase linearly with the stock levels, such that a stock at a higher level is subject to a 

stronger stochastic driver. 

Finally, considering ecosystem wealth under SSM reveal a somewhat different 

scenario. A shift from BAU to SSM in 2016 would not change wealth more than a few 

percent in the short run. Wealth under SSM is expected to increase for almost 10 years before 

it slowly regresses below its initial level. That is, SSM is not sustainable. Wealth under SSM 

is also much more uncertain; the long-run 95% probability interval is (0.86,1.14), notably 

encompassing the BAU long-run probability interval. Taken at face value, SSM has the same 

probability (2.5%) of generating wealth more than 14% above the 2016-level as under BAU. 

SSM has considerable downside risk, however. Wealth under SSM is more uncertain because 

the value function is steeper in the area of the SSM long-run state. Moreover, under SSM, 

capelin fails to recover and cod would increasingly rely on a volatile herring stock (Figure 

3A). That wealth regresses after its initial increase is connected to this collapse of capelin, in 

expectancy (initially, some paths predict recovery, but eventually most paths collapse to near 

the 2016 level). 

 

5. Shadow prices 

In the literature, as discussed above, shadow prices are promoted as highly relevant for 

ecosystem-based management by reflecting ecosystem services through trophic interactions 

and as measures of scarcity and limits to substitutions. We understand shadow prices here as 

marginals (value function gradients), and not necessarily as identical to the adjoint variable in 

the optimization problem (in stochastic problems, as ours, the gradient of the value function is 

not always identical to the adjoint). While shadow prices will reflect the value of ecosystem 

services, they also reflect commercial potential, and these effects are not trivially separated. 

Thus, shadow prices need to be interpreted with some care. The value function – the wealth 

measure – is what matters. Furthermore, shadow prices present a largely static picture in the 

sense that they presume all other stocks being kept constant (or some; we return to 
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considering variations over several dimensions below). But this, staying constant, is not how 

an ecosystems functions, and perhaps a more pertinent consideration would be to consider 

marginals along a given path (that is, subject to some management regime). 

 These reservations aside, we follow Yun et al. (2017) in that studying shadow prices 

may add to our understanding of how the different resource stocks contribute to ecosystem 

wealth in different parts of the state space (in different situations). For example, Figure 3 

displays the shadow price for capelin under EBM (left panel) and BAU (right panel) and in 

two different situations: where cod and herring both are kept fixed at their 2016-level and 

where cod and herring are kept at their expected long-run level. The figure also indicates the 

relevant net market price (harvest market value minus harvest costs, per harvested kilogram), 

and the capelin levels in the respective situations (2016 and long run). The net price varies as 

the relevant harvest level varies with the capelin level (that is, along the horizontal axis); 

when the harvest level is zero, the net price is constant and identical to the highest attainable 

market price (no harvest costs are subtracted). 

As expected, the capelin shadow price (Figure 3) is positive and downward sloping in 

own stock under EBM. In 2016, the shadow price was higher than the net market price, while 

lower at the expected long run level. That the shadow price is higher than the net price 

suggests that capelin is more valuable as prey in the ecosystem than on the market. Under 

BAU, the shadow price is not downward sloping everywhere. That the shadow price is not 

downward sloping everywhere in own stock is because the harvest profile is not adapted to 

the multidimensional growth functions. Under BAU, the shadow price is just below the net 

market price in 2016, but considerably above (approximately three times as high) in the long 

run. A long run shadow price above the net market price suggests that evaluation at market 

undervalues the social worth of capelin. Generally, the price curves are steep at low levels and 

flatter at high stock levels, and close to zero at very high levels. That is, they are strongly 

nonlinear, notably in contrast to the corresponding curves presented in Yun et al. (2017), 

whereas in agreement with recent theoretical work (Nævdal and Skonhoft 2018). 
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Figure 3: Shadow price (gradient of the value function) for capelin under EBM (left panel) and under BAU (right 

panel) with cod and herring at their 2016 levels (bold solid curve) and at their long-run levels (bold dashed 

curve). Indicated are the net price in 2016 (solid curve) and in the long run (dashed curve), and the capelin level 

in 2016 (solid vertical line) and in the long run (dashed vertical line). Under BAU (right panel), the net price is 

identical in 2016 and in the long run. 

 

 In a similar way as for capelin above, Figure 4 displays the shadow and net prices for 

cod under EBM (left panel) and BAU (right panel), and in the 2016-situation (solid curves) 

and in the expected long run (dashed curves). Relevant stock levels are also indicated on the 

figure. Different from the capelin case, the net prices vary also when the harvest level is zero 

because harvest costs are density dependent. As for capelin, the cod shadow price is positive 

and downward sloping in own stock under EBM, both in 2016 and in the long run. The 

general shape and level is similar under BAU, but the shadow price is not downward sloping 

everywhere; near the MSY target level (0.5), the price is briefly upward sloping in own stock. 

This upward sloping near the MSY target level reflect anticipation of the kink in the net price; 

the kink reflects the kink in the harvest rate (see Figure A1). In both scenarios, the shadow 

price is significantly smaller than the net price everywhere but at low stock levels, where the 

shadow price is high while the net price goes to zero. Again as for capelin, the shadow price 

approaches zero at very high stock levels. 



16 
 

  

Figure 4: Shadow price (gradient of the value function) for cod under EBM (left panel) and under BAU (right 

panel) with capelin and herring at their 2016 levels (bold solid curve) and at their long-run levels (bold dashed 

curve). Indicated are the net price in 2016 (solid curve) and in the long run (dashed curve), and the cod level in 

2016 (solid vertical line) and in the long run (dashed vertical line). Under BAU (right panel), the net price is 

identical in 2016 and in the long run. 

 

 Figure 5 shows the herring shadow price under EBM (left panel) and BAU (right 

panel) in the 2016-situation (solid curves) and in the expected long run (dashed curves). The 

shadow price behaves similarly across all scenarios and situations: monotonously downward 

sloping; steeply at low levels and essentially flat at high levels. At low levels, the shadow 

price is positive; herring is valuable as prey for cod. At  higher levels, the shadow price is 

negative under EBM and herring becomes a liability (on the margin) for the Barents Sea 

ecosystem. It varies at what levels the herring shadow price turns negative, but notably close 

to the expected long run level under EBM. That is, under EBM, the system is managed in 

such a manner that in the long run, herring is in expectancy exhausted of its potential for 

social worth. In the 2016 situation, the shadow price turns negative at relatively low levels 

because of its negative effect on the then very small capelin stock. Further, the shadow price 

is generally higher in the long run situation in both scenarios. But our analysis fails to account 

for the value herring from the Barents Sea represents when it enters the Norwegian Sea to 

spawn. Notwithstanding, at low levels, where herring was in 2016 and where it has been in 

many recent years, we find that herring has a positive shadow price and embodies 

considerable ecosystem wealth. In contrast, evaluated at its nonexistent (zero) market price 

significantly underrepresents ecosystem wealth. 
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Figure 5: Shadow price (gradient of the value function) for herring under EBM (left panel) and under BAU (right 

panel) with capelin and cod at their 2016 levels (bold solid curve) and at their long-run levels (bold dashed 

curve). Indicated are the herring level in 2016 (solid vertical line) and in the long run (dashed vertical line).  

 

 Shadow prices reflect scarcity and account for cross-stock interaction effects and 

behavioral feedbacks (Yun et al. 2017). A question that emerges is whether stocks are 

substitutes or complements, something that depends on trophic interactions, how changes in 

abundance affect harvest policies, and how the stocks contribute to the flow of dividends 

(Yun et al. 2017). A way to study substitutability and complementarity between resource 

stocks is to examine shadow price contour plots where two stocks vary while the third stock is 

kept constant. When the shadow price of a given stock decreases with an increase in another 

stock, the second stock acts as a substitute for the first; when the shadow price increases, the 

second stock acts as a complement. We here presuppose that stocks are goods with positive 

shadow prices rather than liabilities with negative shadow prices. In an evidently simpler 

model where shadow prices are monotonic and close to linear (Yun et al. 2017), it suffices to 

check whether shadow price contours are downward or upward sloping to establish if stocks 

are substitutes (downward) or complements (upward). 

As an example, figure 6 shows shadow price contours for capelin (left panel) and cod 

(right panel), under BAU, with herring at the expected long-run level. The capelin shadow 

price (left panel) varies substantially with changes in cod. When the cod stock level is 

relatively low (approximately below 0.6), the capelin shadow price increases with increases in 

cod and cod acts as a complement to capelin. Given that cod preys on capelin, the 

complementarity must lie in the increased ecosystem service as prey that capelin offers. At 

higher cod levels, on the other hand, the capelin shadow price decreases with increases in cod. 

The strength of both these effects vary substantially along the capelin axis. The contours also 

shows that the capelin shadow price is non-monotonic in own stock under BAU, as seen 



18 
 

above (Figure 3). The cod shadow price (right panel) also varies with the capelin level 

although the effects from changes in capelin are less dramatic than effects observed in the 

capelin shadow price (left panel). That cod has greater impact on capelin than vice versa is 

because cod is the main predator on capelin while capelin is one of several food sources for 

cod. When cod is relatively low (again approximately below 0.6), the cod shadow price 

increases with increases in capelin and capelin acts as a complement to cod. At higher cod 

levels, the cod shadow price decreases with increases in capelin. Also for cod does the 

contours show that the cod shadow price is non-monotonic in own stock under BAU, as seen 

above (Figure 4). All of these results depend in various degree on the level of herring. A 

comprehensive account, including consideration of several plots of the type in Figure 6 is 

beyond our current scope.  

 

Figure 6: Shadow price contour plots for the capelin (left panel) and cod (right panel) shadow prices, under 

BAU, evaluated with herring at the expected BAU long-run level. The numbers on the curves indicate the 

shadow price (NOK/kg) along the contour. 

 

 The capelin-cod example in Figure 6 is interesting because both stocks are directly 

utilized and thus contributes to the flow of dividends. Another example is capelin and herring 

shadow prices. Capelin and herring are both pelagic species and prey for cod, and given that 

the interaction with cod most likely are the most important ecosystem service of both stocks, 

investigating substitution effects is of interest. In Figure 7, we display shadow prices for 

capelin (left panel) and herring (right panel), under EBM and with cod at its long-run 

expected level. Both stocks have decreasing shadow prices in own stock, with varying rates 

depending on the relative stock levels. Further, the stocks are complements; the shadow prices 

increase with increases in the other stock. That herring is a complement to capelin is 

somewhat surprising, given that it preys on capelin larvae. The complementary effect is 

stronger when the complement is at low levels. Conversely, when the own stock is at high 
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levels, the complementary effect is essentially one-sided. For example, when capelin is high, 

an increase in herring increases the shadow price of capelin, but an increase in capelin has 

little impact on the herring shadow price. 

 

Figure 7: Shadow price contours for the capelin (left panel) and herring (right panel) shadow prices, under EBM 

and evaluated with cod at the expected EBM long-run level. 

 

 Table 1 summarizes and complements our key results. In particular, it states 50% 

probability intervals for long run shadow prices. These intervals are not contingent on keeping 

all but one dimension constant, as in figures 3 - 5, but are evaluated over the ensemble of 

predicted paths. That is, the listed shadow price probability intervals account for uncertainty 

both in own stock and other capital stocks. All listed intervals are 50% probability intervals, 

thus complementing Figure 2 that displayed 95% intervals for the wealth index. Further, the 

table lists both means and medians for the long run expectancies, and these differ somewhat 

in various cases. 

 Table 1 shows that, in contrast to the finding in Figure 5, the expected long run 

shadow price for herring differs from zero when full uncertainty (that is, both in own and 

other stocks) is accounted for. Still, zero is part of the 50% probability interval. Another result 

complementing earlier findings is that the 50% probability interval for long run wealth under 

BAU and SSM does not have the same upper limit. In Figure 2, we saw that the upper limit of 

the 95% intervals was similar. Whether it is the 50% or the 95% interval one wants to put 

more emphasis on is not necessarily obvious, but clearly, this choice may affect comparisons 

of the different management scenarios. Finally, all listed shadow prices for herring under 

SSM in Table 1 are negative, indicating that SSM fail to benefit from the presence of herring 

in the manner that both EBM and BAU does. Herring is wholly a liability under SSM. 

Long run predictions are riddled by uncertainty, and how important the scaling of the 

stochastic drivers are, is a relevant question. Thus, we provide a summary results table (Table 
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A3, appendix) also for a model with weaker stochastic drivers for the pelagic species (𝑠1 =

0.2, 𝑠3 = 0.2). The first conclusion we can draw from comparing tables 1 and A3 is that 

uncertainty is costly. The reduction in the scaling of stochastic drivers results in 

approximately 8% more wealth under both EBM and BAU. Somewhat surprisingly, SSM 

fares much worse with the reduced stochasticity, yielding approximately 12% less wealth. 

Mainly, this is caused by a much more certain collapse in the capelin stock. Notwithstanding, 

the results for EBM and BAU – the management regimes in focus – are as expected, and we 

would rather err on the side of too large stochastic scaling terms. 

 

Table 1: Results summary for stock levels, shadow prices, and wealth index in the 2016 state and long run (with 

50% probability intervals) for EBM, BAU, and SSM. Shadow prices and wealth index evaluated over predicted 

paths. 

 State Stock level Shadow price Wealth 

 
 𝑥 𝑦 𝑧 𝜕𝑉/𝜕𝑥  𝜕𝑉/𝜕𝑦 𝜕𝑉/𝜕𝑧 𝑉 

EBM 
        

 2016 0.04 0.56 0.10 1.95 3.07 3.45 1.18 

 

long run 

(mean) 
0.45 0.71 0.61 0.374 2.44 1.94 1.26 

 

long run 

(median) 
0.44 0.69 0.53 0.310 2.43 0.181 1.27 

 50% interval (0.33, 0.57) (0.59, 0.80) (0.30,0.85) (0.18, 0.46) (1.92, 2.98) (-0.213, 1.29) (1.25, 1.29) 

BAU 
        

 2016 0.04 0.56 0.10 1.10 3.55 4.11 1.00 

 

long run 

(mean) 
0.41 0.53 0.67 0.347 4.03 1.40 1.05 

 

long run 

(median) 
0.39 0.48 0.61 0.301 4.24 0.301 1.05 

 50% interval (0.30, 0.49) (0.42, 0.58) (0.37, 0.91) (0.204, 0.426) (4.02, 4.44) (-0.025,1.16) (1.03, 1.08) 

SSM 
        

 2016 0.04 0.56 0.10 7.39 3.16 -5.23 0.973 

 

long run 

(mean) 
0.16 0.61 0.76 3.07 2.85 -0.594 0.963 

 

long run 

(median) 
0.05 0.60 0.74 2.95 2.87 -0.576 0.923 

 50% interval (0.03, 0.23) (0.52, 0.69) (0.51, 0.99) (1.74, 4.14) (2.34, 3.39) (-1.30, -0.295) (0.894, 1.04) 

 

6. Concluding remarks 

Our basic result is our solution of (7) subject to (8) and (9) under various assumptions upon 

the set of feasible controls 𝑈. All our findings follow from these solutions. The solutions 

provide value functions and, in the cases of EBM and SSM, where 𝑈 is not limited to a single 

control, feedback control policies. The value functions and the feedback policies take account 

of the dynamic uncertainty in the system, and this uncertainty is as such reflected in all our 
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results. In particular, derived accounting (shadow) prices embody uncertainty over how the 

ecosystem may develop over time. When we report probability intervals for long run shadow 

prices, it is not because the prices are uncertain, but because the prices depend on the stock 

levels, which are uncertain. 

The feedback policies are used to predict how the system will evolve over a fifty year 

period (Figure 1). The value functions then yield the development in ecosystem wealth under 

the different management scenarios (Figure 2). Our finding that a 2016 switch to EBM 

increases wealth with 20-25% is similar in magnitude to the findings in Yun et al. (2017). In 

absolute terms, our results are on par with recent investigations of value creation in the 

Barents Sea (Hänsel et al. 2018). We further derive accounting prices (shadow prices) for the 

various natural capital stocks by considering marginal changes in the value functions (Figures 

3-7). The general finding is that our derived accounting prices differ from relevant net market 

prices. Because accounting prices are the appropriate measures of contributions to social 

worth (Dasgupta 2001), accounts and decisions based on market values may lead astray. In 

particular, accounting practices tend to undervalue natural capital because market prices 

mostly misrepresents scarcity and substitution opportunities for ecosystem components (Obst 

et al. 2016, Greaker et al. 2017). Our study make a novel contribution in relation to these 

concerns because we consider a resource stock (juvenile herring) that is not directly exploited 

and thus has no market value at all. We find that herring has a positive accounting price at 

historically observed stock levels. 

 A fundamental feature of the accounting prices that we report, are their strong 

nonlinearity. This feature allow our prices to become increasingly steeper at low stock levels, 

in line with recent theoretical results (Nævdal and Skonhoft 2018), while leveling off at high 

stock levels. It is only the unexploited herring stock that has negative accounting prices in 

relevant parts of the state space, reflecting that – at very large herring levels – its preying on 

capelin becomes more harmful than its role as prey for cod. As mentioned above, our model 

fail to account for the value the herring represents once it departs for maturity in the 

Norwegian Sea. 

 This latter point leads to a more general discussion of sustainability. Yun et al. (2017) 

expressed concern over declining ecosystem wealth in the Baltic Sea even under EBM. But 

such concerns are only of significance when considering a closed system, which neither our 

nor the Baltic Sea model represents. For one thing, it may in principle make sense to draw 

down wealth in natural capital stocks if substituted for more productive capital of a different 

kind. Also, the value function may be monotonically increasing in a given stock, but this does 
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not imply that investing continually in a higher stock level is rational. Rather, one trades off 

potentially higher wealth with what it takes to attain it, in terms of time and resources. In our 

model, we only observe declining wealth under SSM, but further investigations are required 

to establish whether this is a real concern. Under SSM, the expected long run herring stock 

level is higher than what it is under either EBM or BAU (Figures A2, A3), and depending on 

the value this represents for the herring fishery in the Norwegian Sea, declining wealth in the 

Barents Sea ecoregion may or may not be a concern. In their concluding discussion, Yun et al. 

(2017) points to this need for assessing tradeoffs beyond the bioeconomic model to ultimately 

facilitate fully developed ecosystem-based management. 
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Appendix 

Table A1: Parameter values, equation (8) 

Parameter Value 

𝜌1 1.8515 

𝜌2 0.5490 

𝜌3 0.4326 

𝜙1 0.6583 

𝜙2 0.072e-3 

𝜙3 8.3950 

𝜙4 0.0154e-3 

𝜃1 1.019 

𝜃2 3.191e3 

𝜃3 2.472 

𝜃4 3.252e3 

 

 

Table A2: Parameter values, equation (9) 

Parameter Value 

𝑝1 1.0 

𝑝2 4.2638 

𝑝3 4.5124 

𝑐1 1.9777 

𝑐2 0.6168 

𝛼 1.4 

Note: Original values are scaled such 

that the leading parameter (𝑝1) is unity. 

 

 

Figure A1: Harvest rate profiles as functions of stock levels, under BAU (solid curves) and SSM (dashed 

curves), for capelin (left panel) and cod (right panel). 
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Figure A2: Observed and predicted stock levels (smoothed median paths) with 50% probability intervals (shaded 

areas) under EBM (left panel) and BAU (right panel). 

 

 

Figure A3: Observed and predicted stock levels (smoothed median paths) with 50% probability intervals (shaded 

areas) under SSM. 
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Table A3: Alternative model (reduced scaling of stochastic drivers) results summary for stock levels, shadow 

prices, and wealth in the 2016 state and long run (with 50% probability intervals) for EBM, BAU, and SSM. 

Shadow values and wealth index evaluated over predicted paths. Wealth uses same base as figures in Table 1. 

 State Stock level Shadow price Wealth 

 
 𝑥 𝑦 𝑧 𝜕𝑉/𝜕𝑥 𝜕𝑉/𝜕𝑦 𝜕𝑉/𝜕𝑧 𝑉 

EBM 
        

 2016 0.04 0.56 0.10 1.86 3.16 2.22 1.26 

 

long run 

(mean) 
0.39 0.73 0.90 0.46 2.21 -0.31 1.33 

 

long run 

(median) 
0.38 0.71 0.89 0.44 2.18 -0.36 1.34 

 

50% 

interval 
(0.32, 0.45) (0.62, 0.82) (0.72, 1.06) (0.364, 0.544) (1.72, 2.67) (-0.390, -0.316) (1.32, 1.35) 

BAU 
        

 2016 0.04 0.56 0.10 0.764 3.67 3.65 1.08 

 

long run 

(mean) 
0.35 0.56 0.92 0.413 4.03 0.0077 1.14 

 

long run 

(median) 
0.35 0.51 0.91 0.385 4.36 -0.051 1.13 

 

50% 

interval 
(0.31, 0.40) (0.44, 0.64) (0.75, 1.08) (0.300, 0.495) (4.02, 4.55) (-0.130, 0.089) (1.11, 1.16) 

SSM 
        

 2016 0.04 0.56 0.10 18.7 2.93 -2.73 0.852 

 

long run 

(mean) 
0.02 0.56 0.96 0.938 3.54 -0.0387 0.834 

 

long run 

(median) 
0.02 0.55 0.95 0.902 3.57 -0.0322 0.834 

 

50% 

interval 
(0.02 ,0.03) (0.48 ,0.63) (0.85, 1.06) (0.842, 0.995) (3.16, 3.98) (-0.037, -0.027) (0.816, 0.850) 

 

 


